Reactions of ML_4Cl_2 (M = Mo, W; L = PMe_3, PMePh_2) with Epoxides, Episulfides, CO₂, Heterocumulenes, and Other Substrates: A Comparative Study of Oxidative Addition by Oxygen Atom, Sulfur Atom, or Nitrene Group Transfer

Keith A. Hall¹ and James M. Mayer*.²

Contribution from the Department of Chemistry, BG-10, University of Washington, Seattle, Washington 98195. Received June 19, 1992. Revised Manuscript Received September 1, 1992

Abstract: A comparative survey of the reactivity of the divalent molybdenum and tungsten chloro-phosphine complexes ML_4Cl_2 (M = Mo, W; L = PMe₃, PMePh₂) toward oxidation by a variety of oxygen atom, sulfur atom, and nitrene donors is presented. In general, reactions result in net two-electron oxidation of the metal center, producing metal oxo, sulfido, and imido complexes. The reactions can also be described as oxidative addition reactions, in many cases oxidative addition of C=X double bonds. Reactions are apparently thermodynamically driven by the propensity of Mo and W to form strong multiple bonds with oxygen, sulfur, and nitrogen. ML_4Cl_2 compounds react with ethylene oxide and ethylene sulfide to produce oxo and sulfido tris(phosphine) species, $M(E)L_3Cl_2$ (E = O, S), in equilibrium with oxo and sulfido ethylene species $M(E)(CH_2=CH_2)L_2Cl_2$. Isocyanates (RN=C=O; R = 'Bu, p-tolyl) and 'BuN=C=N'Bu react to form imido tris(phosphine) and imido carbonyl or imido isonitrile complexes, respectively. Phosphine sulfides are desulfurized forming sulfido complexes, but phosphine oxides are unreactive. The π -acids formed in these reactions—for instance, CO from cleavage of RNCO—bind more strongly to the tungsten(IV) versus the molybdenum(IV) oxo, sulfido, and imido products. Similarly, the equilibria for π -acid coordination are more favorable when the ligand is PMePh₂ than when $L = PMe_3$. For all of the complexes, reactions are slowed by free phosphine, consistent with a mechanism involving an initial dissociation of a phosphine ligand followed by trapping of the coordinatively unsaturated species by the oxidizing substrate. Ligand loss from ML_4Cl_2 is rapid for L = PMePh₂ at ambient temperatures but slower for L = PMe₃, with half-lives for PMe₃ loss of 18 min at 24 °C for Mo(PMe₃)₄Cl₂ and 6 min at 69 °C for W(PMe₃)₄Cl₂. For the molybdenum complexes MoL_4Cl_2 (L = PMe₃, PMePh₂), dimerization to the known Mo(II) quadruply bound species $Mo_2L_4Cl_4$ is competitive with oxidation at the metal center. In reactions involving stronger oxidants (SO₂, DMSO, and N₂O), the formation of trivalent species ML₃Cl₃ is often observed, indicating that chlorine atom transfer processes also occur.

Introduction

Oxidative addition is a fundamental reaction in organometallic chemistry, typically involving cleavage of single bonds such as H-H and H₃C-I.³ Oxygen atom transfer and related reactions are receiving increased attention as key transformations in inorganic chemistry, because of their intrinsic interest as multielectron inner-sphere electron-transfer processes and because of their apparent involvement in a range of biochemical processes.⁴ We have been studying novel reactions of W(PMePh₂)₄Cl₂ (2b) in which a double bond (e.g., in cyclopentanone or carbon dioxide) or two single bonds (e.g., in epoxides) are cleaved to give oxo, sulfido, or imido tungsten complexes (eq 1; M = W, L = PMePh₂).⁵

E = O, S, NR; X = CO, $CH_2=CH_2$, CNR ($R = {}^{t}Bu$, p-tolyl)

(1) University of Washington David M. Ritter Fellow.

(2) Presidential Young Investigator, 1988–1993; Sloan Foundation Fellow, 1989–1991.

These reactions can be viewed as oxidative addition reactions or be equally well described as oxygen atom, sulfur atom, or nitrene group transfer reactions, and they therefore provide an important bridge between these two classes of reactions. They are unusual oxidative addition reactions because two bonds in the substrate are broken, forming a divalent ligand (E = O, S, or NR) and a neutral ligand.^{5c} Viewed as atom-transfer reactions, they are remarkable because of the strength of the bond being broken; for instance, removal of an oxygen atom from CO_2 requires 127 kcal/mol. The reactions are also of interest because they are fundamental transformations of (and important synthetic routes to) complexes with metal-ligand multiple bonds. This is an area of continuing growth and importance, as these species have been implicated as reactive intermediates in a range of industrial processes, enzymatic reactions, and reactions in organic synthesis.⁴

In this article we extend this chemistry to the tungsten trimethylphosphine complex, $W(PMe_3)_4Cl_2$ (2a), and the isoelectronic d⁴ molybdenum complexes, $Mo(PMe_3)_4Cl_2$ (1a) and Mo-(PMePh₂)_4Cl₂ (1b). [Throughout this paper, compounds labeled a contain PMe₃ ligands, and those labeled b have PMePh₂ groups.] Comparison of the behavior of these complexes illuminates the mechanisms of these interesting transformations and provides a more complete picture of the scope of the reactions. We begin with the stability and lability of the four divalent complexes ML_4Cl_2 (M = Mo, W; L = PMe₃, PMePh₂), followed by their reactions with each class of substrates in turn.

Results

Thermal Stability and Phosphine Exchange of ML_4Cl_2 . Anaerobic benzene or toluene solutions of complexes 1-2 are stable for weeks at ambient temperatures. At 80 °C, however, the molybdenum complexes $Mo(PMe_3)_4Cl_2$ (1a) and $Mo-(PMeP_2)_4Cl_2$ (1b) react to form the known⁶ quadruply bonded

⁽³⁾ Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987; Chapter 5.
(4) (a) Holm, R. H. Chem. Rev. 1987, 87, 1401-1449. (b) Nugent, W.

^{(4) (}a) Holm, R. H. Chem. Rev. 1987, 87, 1401–1449. (b) Nugent, W. A.; Mayer, J. M. Metal-Ligand Multiple Bonds; Wiley-Interscience: New York, 1988.

^{(5) (}a) Bryan, J. C.; Geib, S. J.; Rheingold, A. L.; Mayer, J. M. J. Am. Chem. Soc. 1987, 109, 2826-2828. (b) Su, F.-M.; Bryan, J. C.; Jang, S.; Mayer, J. M. Polyhedron 1989, 8, 1261-1277. (c) Bryan, J. C.; Mayer, J. M. J. Am. Chem. Soc. 1990, 1/2, 2298-2308. (d) Atagi, L. M.; Over, D. E.; McAlister, D. R.; Mayer, J. M. J. Am. Chem. Soc. 1991, 1/3, 870-874.

^{(6) (}a) $L = PMe_3$: Poli, R.; Cotton, F. A. Inorg. Chem. 1987, 26, 3228-3231. (b) $L = PMePh_2$: Glicksman, H. D.; Hamer, A. D.; Smith, T. J.; Walton, R. A. Inorg. Chem. 1976, 15, 2207.

Figure 1. Plot showing first-order approach to equilibrium kinetics for the reaction of $Mo[P(CH_3)_3]_4Cl_2$ (0.064 M) plus 40 equiv of $P(CD_3)_3$. The ordinate is the function $4\{[P]_e/[P]_i\}$ ln $\{[P]_e/([P]_e - [P]_t)\}$ where $[P]_t$ is the concentration of $P(CH_3)_3$ at time t, $[P]_e$ is the final equilibrium concentration, and $[P]_i$ is the initial concentration of bound $P(CH_3)_3$.

Mo(II) dimers $Mo_2L_4Cl_4$ (L = PMe₃ (3a), PMePh₂ (3b)) along with free phosphine (eq 2). Complexes 3 were identified by

comparison of their ¹H and ³¹P NMR spectra with authentic samples. The reaction is essentially complete within 0.5 h at 80 °C when L is PMePh₂ (1b) but requires a week at this temperature for 1a. W(PMe₃)₄Cl₂ has been previously reported to form $W_2(PMe_3)_4Cl_4$ in refluxing dibutyl ether,⁷ although no reaction is observed upon heating in benzene for weeks at 80 °C. W-(PMePh₂)₄Cl₂ decomposes rapidly (<0.5 h) when heated to 80 °C in benzene, but the known⁷ tungsten quadruply bound dimer is not observed; the tungsten products have not been identified but appear to be paramagnetic as only free PMePh₂ is detected by ¹H NMR and no solids are observed. In all cases, decomposition is fastest during the early stages of reaction and proceeds more slowly as the concentration of phosphine increases, suggesting phosphine inhibition.

The rate of phosphine exchange in the PMe₃ complexes **1a** and **2a** has been determined by monitoring their reaction with PMe₃- d_9 by ¹H NMR (eq 3). Both reactions follow first-order approach M[P(CH₃)₃]₄Cl₂ + xP(CD₃)₃ \rightleftharpoons

1a, 2a

$$M[P(CH_3)_3]_{4-x}[P(CD_3)_3]_xCl_2 + xP(CH_3)_3$$
 (3)

to equilibrium kinetics (e.g., Figure 1). This is consistent with a mechanism involving rate-limiting dissociation of PMe₃ (eqs 4 and 5; $L = P(CH_3)_3$, $L^* = P(CD_3)_3$) and is also consistent with the observation of phosphine inhibition during dimerization of **1a**. The rate of approach to equilibrium of **1a** is the same for initial concentrations of $P(CD_3)_3$ of 0.7 and 2.5 M, which rules out an associative pathway.

$$ML_4Cl_2 \xrightarrow{k} [ML_3Cl_2] + L$$
 (4)

$$[ML_{3}Cl_{2}] + L^{*} \rightarrow ML_{3}L^{*}Cl_{2}$$
(5)

Dissociation of PMe₃ from the molybdenum complex **1a** occurs at ambient temperatures, with a half-life for exchange of the first phosphine of 18 min (k = 6.6 (1) × 10⁻⁴ s⁻¹ at 24 °C). The tungsten analog **2a** is essentially inert at room temperature, but at 69 °C has a half-life for exchange of 7 min ($k = 2.5 \times 10^{-3}$ s⁻¹).⁸ Loss of PMePh₂ from **1b** and **2b** is much more facile. Reaction of **1b** with ≥4 equiv of PMe₃ at ambient temperatures yields **1a** quantitatively within 15 min. **2b** is completely consumed within 5 min of reaction with PMe₃ forming mixed phosphine complexes, with complete substitution to produce 2a requiring 24 h.

Reactions of ML_4Cl_2 with Ethylene Oxide and Ethylene Sulfide. Complexes 1 and 2 deoxygenate ethylene oxide to produce Mo(IV) or W(IV) terminal oxo complexes (eq 6; the reactions of 2b have already been described in detail^{5a,b,d}). The PMe₃ derivatives

$$\underset{\substack{1,2\\ 1,2}}{\overset{ML}{\underset{L}}} \overset{O}{\underset{L}} \overset{M}{\underset{L}} \overset{L}{\underset{L}} \overset{L}{\underset{L}} + L + C_2H_4 \xrightarrow{} \underset{\substack{L}}{\overset{O}{\underset{L}}} \overset{O}{\underset{L}} \overset{M}{\underset{L}} \overset{L}{\underset{L}} \overset{CH_2}{\underset{L}} + 2L \qquad (6)$$

require heating to 80 °C while 1b and 2b react at ambient temperatures. The reactions are fastest in the early stages, slowing as the concentration of free phosphine increases, again indicating phosphine inhibition. These features are typical of essentially all of the reactions of 1 and 2. Phosphine inhibition was confirmed for the reaction of 1a with ethylene oxide (2:1) by the addition of 4 equiv of PMe₃, which slows the reaction by a factor of 5.

The oxo ethylene and oxo tris(phosphine) complexes were identified primarily by their NMR spectra (Table I), which show features characteristic of many of the compounds described here. The trans equivalent phosphine ligands appear as a triplet in ¹H NMR spectra ($J_{PH} = 4$ Hz) and a third phosphine, when present, appears as a doublet ($J_{PH} = 8$ Hz). The ³¹P NMR spectra show a singlet for the bis(phosphine) species, and the tris(phosphine) compounds exhibit a triplet and a doublet, consistent with the trans and meridonal geometries shown.

Reactions of the tungsten complexes with ethylene oxide produce equilibrium mixtures of oxo ethylene species $W(O)(CH_2 = CH_2)L_2Cl_2$ 4 and oxo tris(phosphine) complexes $W(O)L_3Cl_2$ 5. With PMePh₂ as the ligand, the equilibrium lies toward coordination of ethylene (4b; $K_{eq} = 2 \times 10^2$), but with PMe₃, 5a is strongly favored over 4a ($K_{eq} = 9.6 \times 10^{-4}$). Complex 4a can be generated by treatment of 5a with ethylene, but it has not been isolated. The reaction of 2a also forms a small amount of W-(PMe₃)₃Cl₃ (6a),⁹ the product of chlorine atom transfer to 2a.

The corresponding molybdenum complexes also deoxygenate ethylene oxide. 1a yields the oxo tris(phosphine) complex 7a and ethylene (eq 7). With 1b, the initial products are 7b and a new

$$Mo(PMe_3)_4Cl_2 + \bigtriangleup^0 \qquad \qquad Mo(O)(PMe_3)_3Cl_2 + CH_2=CH_2 + PMe_3 \qquad (7)$$

$$la \qquad \qquad 7a$$

paramagnetic species 9b, which gradually disappears. Complex 9b is also formed immediately when 1b is treated with ethylene (eq 8). Complex 9b shows two broad peaks in the ¹H NMR spectrum at -11.5 and -15.5 ppm in a 1:2 ratio due to the PCH₃Ph₂ protons (the methyl protons of Mo(PMePh₂)₄Cl₂ resonate at -13 ppm), suggesting that 9b is the Mo(II) monoethylene adduct Mo(CH₂=CH₂)(PMePh₂)₃Cl₂, analogous to the previously reported W(CH₂=CH₂)(PMe₃)₃Cl₂.⁹ The disappearance of 9b in the above reaction is due to its oxidation to 7b by ethylene oxide. Mo(PMePh₂)₄Cl₂ + CH₃=CH₂ =>

$$0(PMePh_2)_4Cl_2 + CH_2 = CH_2 \approx 1b Mo(PMePh_2)_3(CH_2 = CH_2)Cl_2 + PMePh_2 (8) 9b$$

Molybdenum oxo ethylene complexes 8, while not formed from epoxides, can be detected upon treatment of 7 with an excess of ethylene (eq 9). As in the tungsten compounds, the PMePh₂ $Mo(O)L_{2}Cl_{2} + CH_{2} = CH_{2} \Rightarrow Mo(O)(CH_{2} = CH_{2})L_{2}Cl_{2} + L$

$$\begin{array}{c} \mathsf{MO}(\mathsf{O})\mathsf{L}_3\mathsf{C}\mathsf{l}_2 + \mathsf{C}\mathsf{H}_2 \cong \mathsf{C}\mathsf{H}_2 \rightleftharpoons \mathsf{MO}(\mathsf{O})(\mathsf{C}\mathsf{H}_2 \cong \mathsf{C}\mathsf{H}_2)\mathsf{L}_2\mathsf{C}\mathsf{l}_2 + \mathsf{L} \\ \mathbf{7a,b} & \mathbf{8a,b} \\ \mathbf{8a,b} \\ (9) \end{array}$$

derivative (8b) is more readily formed than the PMe₃ complex 8a, although neither equilibrium is very favorable ($K_{eq} \simeq 1 \times 10^{-3}$ for 8a and 9 × 10⁻² for 8b at 24 °C). This has prevented their isolation; they have been identified by the similarity of their ¹H and ³¹P NMR spectra to those of 5 (Table I).

Ethylene sulfide reacts rapidly with 1a, 2a, and 2b at ambient temperatures to give rare examples of phosphine complexes with

⁽⁷⁾ Sharp, P. R.; Schrock, R. R. J. Am. Chem. Soc. 1980, 102, 1430-1431.
(8) Atagi, L. M. Ph.D. Thesis, University of Washington, Seattle, WA, 1992.

⁽⁹⁾ Sharp, P. R. Organometallics 1984, 3, 1217-1223.

Table I. Selected NMR (1H and 31P) and IR Data

	¹ H NMR ⁴	³¹ P(¹ H) NMR ^a	IR ^b voo or	
complex	δ (m, $J_{\rm PH}$ (Hz), no, H)	δ (m, J_{PP} (Hz)) J_{WP} (Hz)	$\nu_{\rm CN} ({\rm cm}^{-1})$	ref
$M_{\alpha}(\Omega)(\mathbf{PM}_{\alpha}) \subset (\mathbf{T}_{\alpha})$	1 27 (t 4 18 H) 1 26 (d 8 0 H)	-26(t, 21) - 92(d, 21)		
$M_{0}(O)(PM_{2}B_{3})_{3}Cl_{2}(7a)$	1.57 (1, 4, 10 H), 1.20 (0, 0, 9 H) 2.24 (4, 4, 6 H) 1.54 (4, 8, 2 H)	-2.0(1, 21), -9.2(0, 21)		c d
$M_{0}(O)(PMePH_{2})_{3}Cl_{2}(10)$ $M_{0}(O)(O)(PMe_{2})_{3}Cl_{2}(10)$	2.24 (1, 4, 0 H), 1.34 (0, 8, 3 H)	-9.1 (c)	2020 (C D)s	u this work
$M_0(O)(CO)(PMc_3)_2Cl_2$ (108)		$-9.1(8)^{-1}$	$2020 (C_6 D_6)^{\circ}$	chins work
$M_0(O)(CO)(PMPPn_2)_2Cl_2$ (100)	2.21 (1, 4, 6 П)	1 3.2 (8) 5 35 (a)	$2041 (C_6 D_6)$	j this work
$M_0(U)(CH_2 = CH_2)(PMe_3)_2 Cl_2 (8a)$		5.25 (S)		this work
	$3.28 (0, 13, 2\pi), 3.07 (0, 13, 2\pi)^{2}$	10.8 (a)		this work
$MO(O)(CH_2 = CH_2)(PMCPH_2)_2CI_2$ (80)	$2.46 (1, 4, 0 \Pi)^{\prime}$	19.6 (8)		this work
$M_{\alpha}(\Omega)(\Omega) = T_{\alpha}(\Omega)(\Omega)$	$3.24 (0, 12, 2 \Pi), 2.61 (0, 12, 2 \Pi)^{4}$	-7.1.(a)	2122 (Nuial)	this work
$M_{0}(O)(CN-p-101)(PMe_{3})_{2}Cl_{2}(25k)$	1.47 (1, 4, 10 D), 1.92 (8, 3 D)	-7.1 (S)	2132 (Nujol)	this work
$W(O)(CN-p-10)(PMCPn_2)_2Cl_2(250)$	$2.39(1, 4, 0 \Pi), 1.09(8, 3 \Pi)$	250(4.4) I = 242	2127 (INujoi)	LINIS WORK
$w(0)(PMe_3)_3Cl_2(3a)$	1.44 (l, 4, 16 fl), 1.44 (d, 4, 9 fl)	-23.0 (d, 4) $J_{WP} = 342$		κ
W(O)(D)(-D) (-D) (C) (C)		-30.9 (1, 4) $J_{WP} = 440$		1.
$w(0)(PMePn_2)_3Cl_2(50)$	2.22 (t, 4, 6 H), 1.67 (d, 8, 3 H)	$0.0(s) J_{WP} = 340$		κ
	1 22 (4 4 19 11)	-10.7 (s) $J_{WP} = 413$	1005 (C D)	r
$W(O)(CO)(PMe_3)_2Cl_2$ (138)	1.33 (t, 4, 18 H)	-17.5 (s) $J_{WP} = 330$	$1995 (C_6 D_6)$	J
$W(O)(CO)(PMePn_2)_2Cl_2$ (130)	2.22 (t, 4, 6 H)	4.6 (s) $J_{WP} = 331$	2006 (Nujol)	J
$W(O)(CH_2 = CH_2)(PMe_3)_2 Cl_2$ (4a)	1.40 (t, 4, 18 H)	-14.9 (s) $J_{WP} = 275$		this work
	2.64 (m, br)""			<u>,</u>
$W(O)(CH_2 = CH_2)(PMePn_2)_2Cl_2$ (40)	2.43 (t, 4, 6 H)	8.5 (s) $J_{WP} = 342$		J
	2.77 (m, 2 H), 2.24 (m, 2 H)"			
$W(O)(CN-p-101)(PMe_3)_2Cl_2$ (27a)	1.51 (t, 5, 18 H), 2.03 (s, 3 H)	-16.8 (s) $J_{WP} = 338$	$20/9 (C_6 D_6)$	this work
$Mo(S)(PMe_3)_3Cl_2$ (10a)	1.51 (t, 4, 18 H), 1.46 (d, 8, 9 H)	-6.08 (t, 20), -11.4 (d, 20)		this work
$W(S)(PMe_3)_3Cl_2$ (11a)	1.56 (t, 4, 18 H), 1.67 (d, 8, 9 H)	-41.7 (d, 4) $J_{WP} = 2/1$		this work
		-54.4 (t, 4) $J_{WP} = 335$		<i>c</i>
$W(S)(PMePh_2)_3Cl_2$ (11b)	2.24 (t, 4, 6 H), 2.01 (d, 8, 3 H)	-22.3 (s, br) $J_{WP} = 270$		J
		-37.6 (s, br) $J_{WP} = 320$		<u>,</u>
$W(S)(CO)(PMePh_2)_2Cl_2$	2.18(t, 4, 6H)	$4.0 \text{ (s) } J_{WP} = 266$	1986 ($C_6 D_6$)	<i>J</i>
$W(S)(CH_2 = CH_2)(PMe_3)_2Cl_2$ (12a)	1.56(t, 4, 18 H)	-13.9 (s) $J_{\rm WP} = 212$		this work
	$3.44 (m, 2 H), 2.71 (m, 2 H)^n$			<u>^</u>
$W(S)(CH_2 = CH_2)(PMePh_2)_2Cl_2$ (12b)	2.32 (t, 4, 6 H)	8.1 (s) $J_{WP} = 208$		J
	3.17 (m, 2 H), 2.63 (m, 2 H)''	4.0 (1.18) 7.0 (1.18)		
$Mo(N-p-Tol)(PMe_3)_3Cl_2$ (25a)	1.43 (t, 4, 18 H), 1.28 (d, 8, 9 H)	4.9 (t, 18), -7.9 (d, 18)		m
	1.89 (s, 3 H) ²	10.2 ()		
$M_0(N-p-101)(CO)(PMe_3)_2Cl_2$ (19a)	1.32 (t, 4, 18 H), 1.85 (s, 3 H)	-10.3 (s)	$19/1 (C_6 D_6)$	this work
$Mo(N-p-1ol)(CO)(PMePh_2)_2Cl_2$ (19b)	2.31 (t, 4, 6 H), $1./4$ (s, 3 H)	13.9(s)	1986 ($C_6 D_6$)	this work
$Mo(N'Bu)(PMe_3)_3Cl_2$ (26a)	1.42 (t, 4, 18 H), 1.24 (d, 8, 9 H)	5.7 (t, 18), -7.3 (d, 18)		this work
	1.01 (S, 9 H)	10.2 ()	10(0 (C D)	
$MO(N'Bu)(CO)(PMe_3)_2Cl_2(21a)$	1.35 (t, 4, 18 H), 0.83 (s, 9 H)	-10.3 (s)	$1968 (C_6 D_6)$	this work
$Mo(N'Bu)(CO)(PMePh_2)_2Cl_2$ (21b)	2.32 (t, 4, 6 H), 0.79 (s, 9 H)	14.7 (S)	$1985 (C_6 D_6)$	this work
$Mo(N'Bu)(CN'Bu)(PMePn_2)_2Cl_2$ (23b)	2.43 (L, 4, 0 H) 0.72 ($_{2}$ 0 H)	20.2 (S)	$2095 (C_6 D_6)$	LUIS MOLK
	1.01 (s, 9 H), 0.72 (s, 9 H)	20.2(-) $I = 200$	1047 (C D)	41.1
$w(1N-p-101)(CO)(PMe_3)_2Cl_2(2Ua)$	1.37 (L, 4, 10 D), 1.57 (S, 3 D) 2.22 (4, 4, 6 D), 1.76 (6, 2 D)	-20.3 (s) $J_{WP} = 288$	$1947 (C_6 D_6)$	CHIS WORK
$W(N+p-101)(CO)(PMePn_2)_2Cl_2$ (200)	2.32 (I, 4, 0 H), $1./0$ (S, 3 H) ²	$3.3 (s) J_{WP} = 292$	$1904 (C_6 D_6)$	J this suc-1-
$W(N^{B}U)(CO)(PMe_3)_2Cl_2$ (ZZa)	1.44 (t, 4, 10 H), 0.93 (s, 9 H)	-19.4 (s) $J_{WP} = 293$	$1944 (C_6 D_6)$	this work
$W(N^{1}Bu)(CO)(PMePn_{2})_{2}Cl_{2}(22b)$	2.34 (I, 4, 0 H), $U./4$ (S, 9 H)	4.2 (s) $J_{WP} = 288$	1900 (INUJOI)	J Abia wast
$w(n:Bu)(Un'Bu)(PMe_3)_2U_2$ (24a)	1.3/(1, 4, 18 H) 1.28(-0.11) + 0.7(-0.11)/	-20.4 (s) $J_{WP} = 299$		this work
	1.25 (S, 9 H), 1.07 (S, 9 H)	(0, (-), I) = 288	2000 (C D)	c
$w(n'Bu)(Cn'Bu)(PMePh_2)_2Cl_2$ (24b)	2.48 (I, 4, 0 H)	$0.0(s) J_{WP} = 288$	$2090 (C_6 D_6)$	J
	U.99 (S, 9 H), U.// (S, 9 H)			

^aNMR spectra taken in C_6D_6 solution at ambient temperatures unless otherwise indicated. Additional resonances for some of the compounds listed here are given in the Experimental Section. ^bIR spectra were taken as Nujol mulls or in C_6D_6 solution, as indicated. Complete spectra for some of the compounds listed here are given in the Experimental Section. ^cCarmona, E.; Galindo, A.; Sanchez, L.; Nielson, A. J.; Wilkinson, G. *Polyhedron* **1984**, *3*, 347–352. ^dReference 34. ^cAddition of CO to a solution of Mo(O)(PMe₃)₃Cl₂ generates a small amount of a new species, tentatively assigned as **18a**. The ¹H NMR signals for the PMe₃ ligands were not observed, presumably because they are masked by those of Mo(O)(PMe₃)₃Cl₂. ^fReference 5b. ^gComplex **8a** is detected in equilibrium with Mo(O)(PMe₃)₃Cl₂ upon addition of CL₂==CH₂; the ¹H NMR signals for the PMe₃ ligands of these compounds were not observed, presumably because they are masked by those of Mo(O)(PMe₃)₃Cl₂. ^hEthylene resonances. ⁱSpectrum was taken at 5 °C. ^jMethyl resonances of *p*-tolyl or *tert*-butyl group(s). ^kReference 36. ⁱOnly one ethylene resonance is observed for **4a**. ^mReference 14.

terminal sulfido ligands. These products are analogous to the oxo species formed from ethylene oxide. However, the reactions of ethylene sulfide are not as clean as those of ethylene oxide, and they are generally quite sensitive to the amount of oxidant present: in each instance, phosphine sulfide is formed as well as more free ethylene and phosphine than should be formed stoichiometrically. Complex 1a reacts with ethylene sulfide to yield $Mo(S)(PMe_3)_3Cl_2$ (10a; eq 10), but this is unstable in the solution, decomposing to paramagnetic product(s) and (S)PMe_3. Complex 2a gives an

$$\frac{Mo(PMe_3)_4Cl_2}{la} + \sum_{i=1}^{\infty} \frac{Mo(S)(PMe_3)_3Cl_2}{l0a} + CH_2 = CH_2 + PMe_3$$
(10)

equilibrium mixture of W(S)(PMe₃)₃Cl₂ (11a) and W(S)-(CH₂—CH₂)(PMe₃)₂Cl₂ (12a) ($K_{eq} \simeq 7 \times 10^{-2}$), while 2b yields solely the sulfido ethylene species W(S)(CH₂—CH₂)(PMePh₂)₂Cl₂

(12b). In addition, significant amounts of $W(PMe_3)_3Cl_3$ are observed in the reaction of 2a. Complex 1b reacts readily with ethylene sulfide, but a sulfido derivative is not observed in the NMR, only (S)PMePh₂ and free CH₂==CH₂; the molybdenum product(s) has not been identified. When 1b is reacted with less than 1 equiv of ethylene sulfide, 9b is also detected in the reaction mixture (cf. eq 8).

Reactions with CO₂ and Heterocumulenes. Reactions of the tungsten complexes 2a and 2b with CO₂ at ambient temperatures produce equilibrium mixtures of the oxo carbonyl complexes $W(O)(CO)L_2Cl_2$ (13) and the oxo complexes 5 (eq 11). Again,

Table II. Products of the Reactions of ML_4Cl_2 (1,2) with p-TolN=C=O, 'BuN=C=O, and 'BuN=C=N'Bu'

	substrate			
complex	p-TolN=C=O	¹ BuN=C=O	¹ BuN =C= N ¹ Bu	
$M_0(PMe_3)_4Cl_2$ (1a)	$Mo(N-p-Tol(CO)L_2Cl_2(1.0))$	$M_0(N^tBu)L_1Cl_2^b(1,0)$	$Mo_{2}L_{4}Cl_{4}(1,0)^{b}$	
	$M_0(N-p-T_0)L_1C_1(0.6)$	$[Mo_{2}(CO)] L_{4}C[1] \sim (0.7)$	$M_0(N^{\dagger}B_u)L_1C_1(0.3)$	
	$M_0(CO)_2L_2Cl_2(0.2)$	$M_{0}L_{1}Cl_{1}(0.3)$		
$Mo(PMePh_2)_4Cl_2$ (1b)	$M_0(N-p-T_0)(CO)L_2Cl_2$	Mo(N'Bu)(CO)L ₂ Cl ₂	Mo(N'Bu)(CN'Bu)L ₂ Cl ₂	
$W(PMe_1)_4Cl_2(2a)$	$W(N-p-Tol)(CO)L_2Cl_2(1.0)^b$	$W(N'Bu)(CO)L_2Cl_2^{b}$	$W(N'Bu)(CN'Bu)L_2Cl_2^{b}$	
	$W(O)(CN-p-Tol)L_2Cl_2(0.7)$			
$W(PMePh_2)_4Cl_2$ (2b)	$W(N-p-Tol)(CO)L_2Cl_2$	$W(N^{t}Bu)(CO)L_{2}Cl_{2}$	W(N'Bu)(CN'Bu)L ₂ Cl ₂	

^a Products were identified by ¹H and ³¹P{¹H} NMR. Ratios of products formed are given to the right of each species. ^bReaction was heated at 80 °C. ^cThe identity of this species has not been fully established; see text.

the equilibrium lies almost entirely toward the π -acid complex 13 with PMePh₂ as the ligand (the ratio of 13b to 5b is 9:1 when the reaction is carried out in a sealed NMR tube), while the opposite is observed for PMe₃ species (13a:5a = 1:9).

In contrast, the reaction of Mo(PMe₃)₄Cl₂ (1a) with 3 equiv of CO₂ is quite slow (60% reacted after 2 weeks at 80 °C) and gives a variety of products (eq 12): decomposition to the dimer **3a** (cf. eq 2) is the major product (48% of reacted 1a), along with the oxo complex **7a** (20%), the known Mo(III) complex Mo-(PMe₃)₃Cl₃ (14)¹⁰ (13%), small amounts of a new μ -oxo dimer **15** (3%), and a new diamagnetic product (16) (15%). The μ -oxo

species 15 is identified on the basis of its ¹H and ³¹P spectra, which are identical in appearance to those of the recently reported analogous μ -sulfido species.¹¹ Complex 15 is also formed on heating a mixture of 1a and 7a; as these are present in reaction 12, the formation of 15 is not surprising. The new diamagnetic species (16) is believed to be a Mo carbonyl dimer on the basis of its NMR spectrum and CO stretching frequencies (C₆D₆) at 1846 and 1780 cm⁻¹. 16 is also formed in a 1:2 mole ratio with 14 on heating 1a and Mo(CO)₂(PMe₃)₃Cl₂ (17),¹² in effect heating 1a with a very limited amount of CO (1a + CO \rightarrow 17).¹³

Complex 1b is unreactive with 4 atm of CO₂ over weeks at ambient temperatures. Heating a benzene solution in a sealed NMR tube with 3 equiv of CO₂ results in clean, rapid production of the dimer 3b without the formation of any oxo-containing species. The lack of reaction of 1b with CO₂ is not due to any instability of the likely product, Mo(O)(CO)(PMePh₂)₂Cl₂ (18b), which is readily formed from 7b and CO^{5b} and is stable at 80 °C. Even under excess CO, no reduction of 18b to Mo(II) compounds is observed. The potential equilibrium 1b + CO₂ \rightleftharpoons 18b + 2PMePh₂ is not established because the barrier for the reaction of 1b with CO₂ is apparently larger than that for decomposition of 1b to 3b (eq 2). While 18b is readily formed from 7b and CO, the analogous reaction of 7a produces little if any oxo carbonyl (a weak stretcn, possibly due to a bound CO, is seen in the solution IR spectrum at 2020 cm⁻¹, and a singlet is observed in the ³¹P NMR; Table I).

Carbonyl sulfide, SCO, reacts readily with 1a, 1b, and 2a to form predominantly phosphine sulfide and the divalent carbonyl complexes $M(CO)_2(PMe_3)_3Cl_2$ (M = Mo, W) and $Mo(CO)_2$ - $(PMePh_2)_2Cl_2$. The dicarbonyl complexes can all be prepared independently by addition of small amounts of CO to the starting materials.¹² For **2a**, significant amounts of W(PMe₃)₃Cl₃ are also formed, and for 1b other uncharacterized diamagnetic species are observed as well. Isolated $W(S)(PMe_3)_3Cl_2$ (see below) is reactive toward CO to give $W(CO)_2(PMe_3)_3Cl_2$ and $(S)PMe_3$. This suggests that terminal sulfido species may be formed as kinetic products in the reactions of 1 and 2a with SCO, but that these sulfido complexes are inherently unstable with respect to formation of phosphine sulfide, divalent carbonyl species, and perhaps other unobserved product(s) (as the reaction does not balance). These results are in sharp contrast to the reaction of 2b with SCO, which cleanly produces the stable sulfido carbonyl species W(S)- $(CO)(PMePh_2)_2Cl_2.5b$

Complexes 1 and 2 react with isocyanates and di-*tert*-butylcarbodiimide to form imido, imido carbonyl, or imido isonitrile products, as summarized in Table II. The rates of reaction are, in each case, in the order *p*-tolylNCO > 'BuNCO > 'BuNCN'Bu. For 1b, for instance, the half-lives for reaction at 24 °C are ca. 2 min, 100 min, and 2 days, respectively. The reactivity of 1b is essentially the same as that previously reported for 2b, cleanly producing imido carbonyl and imido isonitrile complexes (eqs 13 and 14). The reactions of 1a, however, result in mixtures of

$$M(PMePh_2)_4Cl_2 + RNCO \rightarrow$$
1b, 2b

$$M(NR)(CO)(PMePh_2)_2Cl_2 + 2PMePh_2 (13)$$

$$R = p\text{-tolyl: 19b, 20b}$$

$$R = tert\text{-butyl: 21b, 22b}$$

$$M(PMePh_2)_4Cl_2 + RNCNR \rightarrow 1b, 2b$$

$$M(NR)(CNR)(PMePh_2)_2Cl_2 + 2PMePh_2 (14)$$

$$R = tert-butyl: 23b, 24b$$

products. At ambient temperatures *p*-tolyl isocyanate yields both the imido carbonyl complex $Mo(NTol)(CO)(PMe_3)_2Cl_2$ (19a) and the known imido tris(phosphine) 25a¹⁴ (eq 15). The free

$$MoL_4Cl_2 + TolNCO \rightarrow Mo(NTol)(CO)L_2Cl_2 + 1a (L = PMe_3)$$

$$Mo(NTol)L_3Cl_2 + L + CO (15)$$

$$25a$$

CO from the formation of 25a appears as trace amounts of $Mo(CO)_2(PMe_3)_3Cl_2$ (17). In the absence of 1, an equilibrium is established between 25a, 19a, CO, and L. Reaction with *tert*-butyl isocyanate at 80 °C forms a rare example of a molybdenum *tert*-butyl imido complex, $Mo(N^{1}Bu)(PMe_3)_3Cl_2$ (26a),¹⁵ along with a significant amount of the carbonyl dimer 16 and

^{(10) (}a) Atwood, J. L.; Hunter, W. E.; Carmona-Guzman, E.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1980, 467. (b) Gordon, J. C.; Poli, R. Inorg. Chem. 1991, 30, 4550–4554.

 ⁽¹¹⁾ Hall, K. A.; Critchlow, S. C.; Mayer, J. M. Inorg. Chem. 1991, 30, 3593.
 Hall, K. A. Manuscript in preparation.
 (12) (a) Mo(CO)₂(PMe₃)₃Cl₂ and W(CO)₂(PMe₃)₃Cl₃: Carmona, E.;

^{(12) (}a) $Mo(CO)_2(PMe_3)_3Cl_2$ and $W(CO)_2(PMe_3)_3Cl_3$: Carmona, E.; Doppert, K.; Marin, J. M.; Poveda, M. L.; Sanchez, L.; Sanchez-Delgado, R. *Inorg. Chem.* **1984**, *23*, 530–534. (b) $Mo(CO)_2(PMePh_2)_2Cl_2$ (which has not been previously reported): ¹H NMR δ 1.65 (s, $P(CH_3)Ph_2$); ³P NMR δ 11.5 (s, $P(CH_3)Ph_2$); IR $\nu_{CO}(C_6D_6) = 1942$ (s), 1847 (s) cm⁻¹. The CO stretches are consistent with two carbonyls and fall roughly between those of Mo-(CO)_2(PMe_3)_3Cl_3 [1920 (s), 1820 (s) cm⁻¹ (C₆D₆)] and Mo(CO)_2(PPh_3)_2Cl_2 [1960 (s), 1890 (s) cm⁻¹) (Nujol)]: Colton, R.; Tomkins, I. B. *Aust. J. Chem.* **1966**, *19*, 1143–1146.

⁽¹³⁾ The ¹H NMR of the complex shows two virtual triplets which are not coupled to each other and two triplets in the ³¹P NMR which are coupled to each other, suggesting that the species contains two inequivalent pairs of trans-equivalent phosphines—a situation which is difficult to explain by invoking a single metal center. That this species (assuming that it is a dimer) is formed in a 1:2 ratio with Mo(PMe₃)₃Cl₃ suggests that it may be a Mo(1) dimer, the result of disproportionation of **1a** and Mo(CO)₂(PMe₃)₃Cl₂.

⁽¹⁴⁾ Chou, C. Y.; Huffman, J. C.; Maatta, E. A. Inorg. Chem. 1986, 25, 822-826.

⁽¹⁵⁾ Mo(N¹Bu)(PMe₃)₃Cl₂ (26a) has been very recently reported, prepared by a quite different route: Green, M. L. H.; Konidaris, P. C.; Mountford, P.; Simpson, S. J. J. Chem. Soc., Chem. Commun. 1992, 256-9.

Figure 2. Hammett plot of $\log (r/r_0)$ versus σ^+ . r_0 is the ratio of imido to oxo products formed in the reaction with phenyl isocyanate, and r is the analogous ratio for the other isocyanates. Plotting versus σ_p gave a poorer fit and a ρ value of 0.23.

 $Mo(PMe_3)_3Cl_3$. Although the imido carbonyl complex Mo-(N'Bu)(CO)(PMe_3)_2Cl_2 (21a) is not observed, it can be produced in equilibrium with complex 26a on treatment with CO. Heating 1a in the presence of 'BuN=C=N'Bu gives mostly decomposition to the dimer 3a with low yields of 26a.

 $W(PMe_3)_4Cl_2$ (2a) reacts at 80 °C with *tert*-butyl isocyanate and 1,3-di-*tert*-butylcarbodiimide cleanly (as is observed with 1b and 2b) to produce only imido carbonyl $W(N^tBu)(CO)(PMe_3)_2Cl_2$ (22a) and imido isonitrile species $W(N^tBu)(CN^tBu)(PMe_3)_2Cl_2$ (24a). With *p*-tolyl isocyanate, however, cleavage of both the C=N and C=O bonds is observed, producing imido carbonyl and oxo isonitrile species (eq 16). Complexes 20a and 27a are formed

$$WL_4Cl_2 + TolNCO \rightarrow W(NTol)(CO)L_2Cl_2 + 2a (L = PMe_3) W(O)(CNTol)L_2Cl_2 + 2L (16) 27a$$

in a 1:1 ratio at ambient temperatures, suggesting that there is little preference for cleavage of the isocyanate at the C=N vs the C=O bond, although performing the reaction at elevated temperatures (80 °C) favors the imido product (**20a:27a** = 2.5:1). The absence of W(O)(CO)(PMe_3)_2Cl₂ (**13a**) and W(NTol)-(CNTol)(PMe_3)_2Cl₂ in the reaction indicates that the π -acid ligands in **20a** and **27a** are not labile. Complex **27a** can be formed independently by addition of *p*-tolyl isonitrile to W(O)(PMe_3)_3Cl₂ (**5a**) (and the analogous molybdenum oxo isonitrile complexes **25a** and **25b** are readily formed from CNTol plus **7a** and **7b**, respectively). None of the oxo isonitrile species has been observed to undergo isomerization to imido carbonyl species or vice versa.

It is remarkable that of all the reactions of 1 and 2 with isocyanates, only 2a + TolNCO gives both C=N and C=O cleavage. To probe the origin of this lack of chemoselectivity, we have examined various para-substituted isocyanates and found that the substituent has only a slight effect. Phenyl isocyanate, 4-methoxyphenyl isocyanate, and 4-(trifluoromethyl)phenyl isocyanate all react to give mixtures of imido carbonyl and oxo isonitrile species, with the ratio varying only slightly from 1:0.76 to 1:1.29. A Hammett plot of this ratio versus σ^+ (Figure 2) yields a very small ρ value of 0.17.¹⁶ Thus, while imido formation is slightly enhanced by electron-withdrawing groups on the isocyanate, the magnitude of the effect is remarkably small. For comparison, the dissociation of 3-arylpropanoic acids, where the aryl group is insulated from the acid by two methylene groups, is more sensitive to substituent effects on the aryl group (ρ = 0.24).16

Reactions with Phosphine Oxides and Phosphine Sulfides. The tungsten complexes 2a and 2b react with (S)PMe₃ or (S)PMePh₂, respectively, to form terminal sulfido complexes (eq 17). Trace

$$\begin{array}{c} WL_4Cl_2 + (S)PR_3 \rightarrow W(S)L_3Cl_2 + 2L \\ \textbf{2a,b} \\ 11a,b \end{array}$$
(17)

amounts of W(PMe₃)₃Cl₃ (\leq 5%) are also observed for the reaction of **2a**. This is the best synthetic route to compounds **11**, as their high reactivity precludes the use of better sulfur atom donors. The reaction of **1a** with (S)PMe₃, however, proceeds at 80 °C to yield Mo(III) dimers with a bridging sulfido ligand (eq 18).¹¹ This reaction apparently occurs by initial sulfur atom transfer to form the terminal sulfido complex **10a**, similar to eq 17, but **10a** then conproportionates with **1a** to give the observed product (eq 18).¹¹

$$\frac{MoL_4Cl_2 + (S)PMe_3}{la} \xrightarrow{-2L} [Mo(S)L_3Cl_2] \xrightarrow{MoL_4Cl_2} L \xrightarrow{Cl_{m_1}} \sqrt{MoL_4Cl_2} \xrightarrow{Cl_{m_2}} \xrightarrow{Cl_{m_2}} \xrightarrow{Cl_{m_2}} \sqrt{MoL_4Cl_2} \xrightarrow{Cl_{m_2}} \xrightarrow{Cl_$$

This scheme is supported by the reaction of 1a with 0.5 equiv of ethylene sulfide, in which formation of 10a occurs at ambient temperatures and conproportionation is observed upon heating to 60 °C. Complex 1b also reacts with (S)PMePh₂, but the metal-containing product(s) of this reaction is apparently paramagnetic and NMR silent; only free PMePh₂ is observed.

None of the complexes 1-2 deoxygenate phosphine oxides to produce the terminal oxo complexes 5 and 7, nor are these oxo complexes reduced by free phosphine (eq 19). The lack of reaction is thus due to a kinetic barrier. The tungsten complexes 2 have been shown to deoxygenate a phosphine oxide tethered to a phosphine, suggesting that part of the kinetic barrier for phosphine deoxygenation lies in the difficulty of initial coordination to W(II).¹⁷

$$\begin{array}{cccc} ML_4Cl_2 + (O)PR_3 & & & \\ \hline 1, 2 & & & \\ \hline 5, 7 & & \\ \end{array}$$
(19)

Reactivity of 1 and 2 toward Miscellaneous Oxygen Atom **Donors.** Compounds 1 and 2 also react with O_2 , SO_2 , N_2O , and DMSO to produce the terminal oxo complexes 5 and 7 in variable yields (6-84%). The reactions are typically quite sensitive to the amount of oxidant present: with excess oxidant, oxo formation is often accompanied by production of phosphine oxide, phosphine sulfide (observed in the reaction with SO_2), and uncharacterized paramagnetic and/or diamagnetic species. These reactive oxidants can further oxidize 5 and 7 to higher valent species, which likely decompose to phosphine oxides and other products. Reactions of the PMe₃ complexes 1a and 2a with N₂O, DMSO, and SO₂ also result in formation of the trivalent species $M(PMe_3)_3Cl_3$ in yields ranging from 9 to 60%. The PMePh₂ complexes 1b and 2b generally do not produce significant amounts of such products, except that small amounts of Mo(PMePh₂)₃Cl₃ (~10%) are formed in the reaction of 1b with DMSO. Traces of W(PMe₃)₂Cl₄ are also observed in reactions of 2a with SO₂ and N₂O.

Complexes 1 and 2 all react with dioxygen very rapidly at ambient temperatures, immediately forming the oxo complexes 5 or 7 and NMR-silent species. These reactions with dioxygen are the only reactions we have found that proceed faster than phosphine loss, suggesting either an associative path or outer-sphere electron transfer.

Water and simple alcohols react with the molybdenum complexes 1 quite differently from their reported reactions with 2, which form oxo and alkoxide complexes (e.g., eq 20^{18}). For 2a,

$$WL_4Cl_2 + MeOH \rightarrow W(O)L_3Cl_2 + CH_4 + 2b (L = PMePh_2) Sb W(OMe)_3L_2Cl_2 + H_2 (20)$$

reaction with water produces the oxo complex 5a and $W(H)_2$ -(PMe₃)₄Cl₂.¹⁹ In contrast, 1a is unreactive toward methanol and *p*-cresol and only slightly reactive toward water, producing, on heating, predominantly the dimer 3a and only trace amounts (<10%) of the oxo complex 7a. Mo(PMePh₂)₄Cl₂ (1b) is not

⁽¹⁶⁾ Sundberg, R. J.; Carey, F. A. Advanced Organic Chemistry, Part A; Plenum Press: New York, 1977; Tables 4.1 and 4.2, p 145.

⁽¹⁷⁾ Brock, S. L.; Mayer, J. M. J. Am. Chem. Soc. 1991, 30, 2138-2143. Brock and Mayer describe the deoxygenation of the monooxide of diphos, Ph₂PCH₂CH₂P(O)Ph₂, by 2b.

⁽¹⁸⁾ Jang, S.; Atagi, L. M.; Mayer, J. M. J. Am. Chem. Soc. 1990, 112, 6413-6414.

⁽¹⁹⁾ Chiu, K. W.; Lyons, D.; Wilkinson, G.; Thornton-Pett, M.; Hursthouse, M. B. Polyhedron 1983, 2, 803-810.

oxidized by water, methanol, or p-cresol; remarkably, water and methanol catalyze its dimerization to 3b. Addition of water to benzene solution of 1b results in high-yield conversion to 3b within days, while solutions of 1b in dry benzene are stable for weeks at 25 °C. The nature of this unprecedented catalysis is not yet understood.

Discussion

The reactions described here typically involve two-electron oxidation of the molybdenum or tungsten center from the +2 to the +4 oxidation state with the formation of metal-oxygen, -sulfur, or -nitrogen multiple bonds (eq 21). Transfer of an oxygen atom,

$$ML_{4}Cl_{2} + EX \xrightarrow{a} M(E)(X)L_{2}Cl_{2} + 2L$$

$$c_{.I} \downarrow c$$

$$(21)$$

$$b M(E)L_{3}Cl_{2} + L + X$$

a sulfur atom, or an NR group (E) from the oxidant to the metal typically leaves a good ligand X (such as CO or ethylene) for the metal center to bind. When this ligand binds to the metal (path a), eq 21 looks like an oxidative addition reaction, either oxidative addition of two single bonds (epoxides, episulfides) or oxidative addition of a double bond (CO_2 , isocyanates). On the other hand, path b of eq 21 is commonly described as an atom-transfer reaction^{4a} because it involves "simple" transfer of O, S, or NR from the substrate to the metal.

Paths a and b are mechanistically distinct but closely related in the sense that they result in similar products. The data indicate that whether the ligand "X" is bound or free depends on the affinity of the oxidized metal center for the ligand and not necessarily on the nature of the oxidation pathway. For example, epoxides have been shown to oxidize 2b by an atom-transfer pathway (b) (without the formation of an intermediate with W-C bonds), yet the dominant product from CH₂CH₂O is the oxo ethylene complex,^{5d} the net pathway for these reactions being "b $+ c_{-1}$ ". The likely mechanism for CO₂ and isocyanate cleavage resembles an oxidative addition, with an η^2 -complex opening to the oxo carbonyl or imido carbonyl product via pathway a,^{5c} yet in reactions of **1a** much of the CO is found free in the solution, the net pathway for these reactions being "a + c". Thus, the simple paradigm of the oxidative addition of double bonds E=X to give M(E)(X), derived from the chemsitry of $W(PMePh_2)_4Cl_2$ (2b),⁵ is a special case of a range of possible pathways: a, a + c, b, or $b + c_{-1}$.

In addition to reaction pathways involving two-electron redox chemistry resulting in oxo, sulfido, or imido complexes, a number of reactions we have explored give small amounts of the oneelectron oxidation products, ML_3Cl_3 (6, 14). Complexes 6 and 14 are formally the result of chlorine atom addition to 1 and 2, yet none of the reacting substrates contain chlorine. They occur more frequently in reactions involving the stronger oxidants, such as DMSO, although traces of 6a are observed on reacting 2a with TolNCO and (S)PMe₃. This suggests that oxidation beyond Mo(IV) or W(IV) may yield a species that can oxidize 1 or 2 by chlorine atom transfer. Such one-electron transfer (Cl addition) has been found to be a very common side reaction in our studies of intermetal oxygen atom transfer.²⁰ Thus while the reactivity of 1 and 2 is dominated by two-electron oxidation, this alone does not provide a complete picture of the redox chemistry occurring.

Binding of π -Acid Ligands to Mo(IV) and W(IV). π -Acid ligands such as CO and ethylene normally bind poorly to high oxidation state species, but d² complexes with strong π -donor ligands such as an oxo have a pair of electrons available for back-bonding.5b The position of the equilibrium for binding of the ligand X (eq 22) depends on both the M-X bond strength and the nature of the phosphine ligand with which X competes.

$$M(E)L_{3}Cl_{2} + X \rightleftharpoons M(E)(X)L_{2}Cl_{2} + L$$
(22)

PMe₃ binds much more strongly than PMePh₂ because of its higher basicity and smaller size, as evidenced by the lower lability of the phosphines in 1a and 2a compared to the PMePh₂ complexes 1b and 2b. Steric effects are particularly pronounced in the trisor tetrakis(phosphine) complexes, with the central ligand in meridonal tris(PMePh₂) complexes being quite labile. Thus, retaining the formed π -acid ligand is more favorable for the PMePh₂ complexes than for the PMe₃ complexes. For example, tert-butyl isocyanate reacts with complex 1b to give an imido carbonyl complex 21b, while it reacts with 1a to yield the imido tris(phosphine) complex 26a. In some instances, particularly in the reactions of 1a, the π -acid ligand is found bound to a divalent metal center, a result of the high affinity of the electron-rich starting materials, ML_4Cl_2 , for the π -acid.

Tungsten complexes have a higher affinity for binding a π -acid ligand relative to phosphine than analogous molybdenum complexes. Reactions of 1a and 2a with tert-butyl isocyanate, for instance, give tungsten imido carbonyl complexes but molybdenum imido tris(phosphine) species. Since the size difference of molybdenum and tungsten is very small, this is undoubtedly an electronic effect: tungsten is more electron rich than molybdenum (more easily oxidized), so that it binds π -acid ligands better than molybdenum (typical of second vs third row metals). This trend is evident in the increased back-bonding for W vs Mo, as revealed by a ca. 20 cm⁻¹ difference in CO stretching frequencies (Table I): for M(NTol)(CO)(PMePh₂)₂Cl₂, for example, $\nu_{CO} = 1964$ (W) and 1986 cm^{-1} (Mo). By this criterion, the PMe₃ complexes are more electron rich than the PMePh₂ analogs $(11-22 \text{ cm}^{-1})$. While this suggests stronger binding of π -acids to the PMe₃ complexes, this is a minor factor in the equilibria summarized in eq 22 because it is overwhelmed by the metal's preference for PMe₃ over PMePh₂.

The multiply bonded ligand also affects the binding of π -acid ligands,^{5b} with the imido complexes having the highest preference for a π -acid and the oxo species the lowest. This is due to greater back-bonding in the imido complexes, as revealed in the CO stretching frequencies. For instance, ν_{CO} in Mo(E)(CO)-(PMe₃)₂Cl₂ compounds varies from 1968 cm⁻¹ for E = N^tBu to 2020 cm⁻¹ for E = O. In general, the order of ν_{CO} as a function of the multiply bonded group E is N'Bu \simeq NTol < S < O. This trend suggests that the oxo ligands are the poorest π -donors, which is consistent with the high electronegativity of oxygen versus nitrogen or sulfur: O (3.5) > N (3.0) > S (2.5).²¹ However, that the imido ligands are the best π -donors does not correlate with electronegativity but rather with basicity of the free ligands, as RN^{2-} is substantially more basic than either free O^{2-} or S^{2-} (cf., the pK_a's of the conjugate acids are RNH₂ (~38) \gg H₂O $(16) > H_2S(7)$).²² The lack of correlation with electronegativity may be due to sulfur being a third period element, which are thought to form weaker π -bonds because of their more diffuse p orbitals.

The preference for ligand binding to the same metal center appears to be CNR \gg CO \geq CH₂—CH₂. Isonitriles are always found bound to the metal center, while CO is readily lost from many of the complexes. Isonitriles are known to bind better to high-valent metal centers than CO or ethylene,²³ but it is unusual that in some instances ethylene and CO share roughly equal preference by the metal (e.g., 2a + ethylene oxide versus 2a + ethylene CO_2). This may be because ethylene, like an isonitrile, is expected to be an intrinsically better σ -donor than CO, a feature which would be unusually important in these high-valent complexes. In addition, the M(IV) compounds have only one pair of electrons available for back-bonding, perfect for ethylene but only utilizing one of the two π^* -orbitals of CO.

The metal-ligand multiple bond appears to be the primary determinant of the tungsten-phosphorus coupling constants for the trans-phosphine ligands, as the coupling constants fall in

⁽²⁰⁾ Over, D. E.; Critchlow, S. C.; Mayer, J. M. Inorg. Chem. 1992, 31, 4643-4648

⁽²¹⁾ Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: New York, 1960; p 43.

⁽²²⁾ March, J. Advanced Organic Chemistry, 3rd ed.; Wiley: New York, 1985; Table 1, pp 220-222. (23) Treichel, P. M. Adv. Organomet. Chem. 1973, 11, 21-86.

Table III. Substrate Bond Dissociation Energies^a and Summary of Observed Reactions^b

			ΔH	complex ^b			formation of	
substrate (EX)	Ε	x	(kcal/mol) ^a	1a	1b	2a	2b	$(E)PR_3 (E = O, S)$
N ₂ O	0	N ₂	39	×	×	×	×	OPMe ₃
$1/2O_{2}$	0	-	59°	×	×	×	×	OPMe ₃
CH,CH,O	0	$CH_2 = CH_2$	84	Χ, Δ	×	Χ, Δ	×	
Me ₂ SO	Ó	Me ₂ S	86 ^d	×	×	×	×	OPR ₃
CH ₃ OH	0	CH₄	89 ^d	-	-	\times, Δ^{e}	×	-
H ₂ Ó	0	H ₂	117	(×, ∆)∕	-	\times, Δ^{e}	×	
OPPh ₃	0	PPh_3	126 ^d	_	-	-	-	
CO ₂	0	co	127	Χ, Δ	-	Χ, Δ	×	
SO_2	0	SO	132	×	×	×	×	OPR ₃ , SPR ₃
OPMe,	0	PMe ₃	1398	-	-	-	-	
CH ₂ CH ₂ S	S	$CH_2 = CH_2$	59	×	-	×	×	SPR ₃
scō	S	CO ^T	74	-	-	-	×	SPR ₃
SPMePh ₂	S	PMePh ₂	h	j	-	j	×	-
SPMe ₃	S	PMe ₃	92 [*]	Χ, Δ	j	Χ, Δ	j	
OC=NTol	NTol	co	$\sim 88^i$	×	×	Χ, Δ	x	
O=CNTol	0	CNTol	$\sim 130^{i}$	-	-	Χ, Δ	-	
OC=N'Bu	N'Bu	CO	$\sim 88^i$	Χ, Δ	×	Χ, Δ	×	
'BuN =- CN'Bu	N'Bu	CN ¹ Bu	k	Χ, Δ	×	Χ, Δ	×	

^a ΔH for the reactions XE \rightarrow X + E in the gas phase, compiled from the data in ref 25a unless otherwise indicated. ^b 1a = Mo(PMe₃)₄Cl₂; 1b = Mo(PMePh₂)₄Cl₂; 2a = W(PMe₃)₄Cl₂; 2b = W(PMePh₂)₄Cl₂; × = reaction proceeds to an oxo, sulfido, or imido product; Δ = slow or unreactive at 25 °C, heated to ca. 80 °C; - = did not react to form an observable oxo, sulfido, or imido complex. ^{c1}/₂ ΔH^{o} for O₂(g) \rightarrow 2O(g). ^d Reference 4a. ^eOther complexes, such as alkoxide or hydride species, also formed. ^fTrace amount (<10%). ^eReference 25b,c. ^hReference 26. The P=S bond dissociation energy in SPMePh₂ is likely to be less than the 92 kcal/mol of SPMe₃, perhaps by >10 kcal/mol, by analogy between O=PPh₃ and O=PMe₃. ^eBond strength not strength not known.

narrow ranges for each type of multiple bond, almost irrespective of the nature of the phosphine or the X ligand (PR₃, CO, CNR, =CR₂).²⁴ $J_{WP_{trans}}$ values are in the range 330-342 Hz for the oxo complexes W(O)(X)L₂Cl₂, 288-308 Hz for the imido compounds, and between 266 and 276 Hz for the sulfido derivatives, a pattern which parallels the electronegativity of the multiply bonded ligand (see above). The more electronegative the multiply bonded ligand, the more polar the multiple bond, which implies less metal s character in the bond. Thus, the tungsten s orbital is more available for bonding to other ligands, such as the phosphines, resulting in increased scalar coupling, $J_{WP_{trans}}$. The only exceptions to the observed ranges are the $J_{WP_{trans}}$ values for the ethylene complexes, which are, in each case, roughly 63 Hz lower: oxo, 263-275 Hz; imido, 232-245 Hz; sulfido, 208-212 Hz.

Thermodynamics of Atom Transfer. The transfer of an oxygen atom, sulfur atom, or nitrene group depends both on the strength of the bond(s) being broken in the substrate and on the strength of the metal-ligand multiple bond, which depends on the metal's ease of oxidation and its affinity for a multiple bond. (The binding of the π -acid ligand does not contribute appreciably to the driving force for these reactions, being at most a few kilocalories per mole more favorable than binding of a phosphine.) Table III shows the enthalpy required to remove an oxygen atom, a sulfur atom, or a nitrene from each of the substrates discussed and provides a summary of the reactions: whether an oxo, sulfido, or imido complex is formed, whether heating is required, and whether phosphine oxide and/or phosphine sulfide are observed.

Strong bonds are cleaved in these reactions, including the C=O double bond in CO₂ (127 kcal/mol)²⁵ and the S=PR₃ bond of ca. 92 kcal/mol,²⁶ suggesting that the metal-ligand multiple bonds are quite strong as well. Concurrent oxidation of a phosphine,

Scheme I

$$ML_4Cl_2 \longrightarrow L + [ML_3Cl_2]$$
I
$$M(E)(X)L_2Cl_2$$

$$M(E)(X)L_2Cl_2$$

when observed, provides a large additional driving force. An estimate of the $L_3Cl_2W\equiv0$ bond strength in **5b** of $\gtrsim 138$ kcal/mol has been obtained from the reactions of **2** with CO_2 .²⁷ (The metal-oxygen multiple bond is written as a triple bond because that is the best molecular orbital description.²⁸) The tungsten-sulfur and tungsten-nitrogen bond strengths in $L_3Cl_2W\equivS$ and $L_3Cl_2W\equivN$ 'Bu can also be crudely estimated to be $\gtrsim 100$ kcal/mol on the basis of the desulfurization of (S)PMe₃ ($D[R_3P=S] \simeq 92$ kcal/mol and cleavage of RNCO (assuming $D[RN=CO] \simeq D[HN=CO] = 88$ kcal/mol^{5c}). A similar rough estimate can be obtained for the molybdenum-nitrogen bond because **1a** and **1b** also cleave isocyanates.

The strengths of the L₁Cl₂Mo=O and L₁Cl₂Mo=S bonds are not amenable to the same kind of estimates because they are not cleanly formed in reactions with CO_2 and $(S)PR_3$, but these bonds are still likely to be quite strong. Oxygen atom transfer is observed from CO_2 to 1a, and molybdenum oxo complexes such as Mo- $(O)(CO)(PMePh_2)_2Cl_2$ (18b) are resistant to reduction by CO or phosphines. (In contrast, isoelectronic d² rhenium oxo complexes are typically reduced readily by phosphines.²⁹) The lack of clean reactions of 1a or 1b with CO_2 is most likely a kinetic effect (see below) rather than being due to insufficient driving force. The multiple bonds formed by molybdenum are expected to be somewhat weaker than the tungsten analogs because molybdenum compounds are in general not as easily oxidized and because bonds are typically weaker to second row than to third row transition elements.³⁰ While there is little direct evidence for this trend from these reactions reported here, it is supported by our recent studies of intermetal oxygen atom transfer.²⁰

⁽²⁴⁾ Values of $J_{WP_{Irgan}}$ were obtained from this work, ref 5, and Clark, G. R.; Nielson, A. J.; Rickard, C. E. F.; Ware, D. C. J. Chem. Soc., Dalton Trans. 1990, 1173.

^{(25) (}a) Bond strengths are calculated using ΔH_1° values from *The NBS Tables of Thermodynamic Properties*; Wagman, D. D., Ed.; American Chemical Society and the American Institute of Physics for the National Bureau of Standards: Washington, D.C., 1982; Vol. 1. (b) Long, L. H.; Sackman, J. F. *Trans. Faraday Soc.* 1957, 53, 1606. (c) Claydon, A. P.; Fowell, P. A.; Mortimer, C. T. J. Chem. Soc. 1960, 3284.

⁽²⁶⁾ D(P=S) for (S)PMe₃ is taken to be 92 kcal/mol on the basis of the reported values for (S)PPr₃ and (S)PBu₃ of 91.6 and 91.5 kcal/mol: Chernick, C. L.; Pedley, J. B.; Skinner, H. A. J. Chem. Soc. 1957, 1851.

⁽²⁷⁾ More complete discussions of the assumptions inherent in this type of estimate can be found in ref 5c and Conry, R. R.; Mayer, J. M. Inorg. Chem. 1990, 29, 4862-4867.

⁽²⁸⁾ See ref 4b, Chapter 2.

⁽²⁹⁾ Rouchias, G. Chem. Rev. 1974, 74, 531 and references therein.

⁽³⁰⁾ See: Coliman, J. P.; Garner, J. M.; Hembre, R. T.; Ha, Y. J. Am. Chem. Soc. 1992, 114, 1292–1301 and references therein for a recent discussion.

Mechanistic Considerations. The reactions of compounds 1 and 2 are significantly slower than the rate of phosphine loss (except for reactions of O_2) and are inhibited by the presence or buildup of free phosphine. Substrates such as SO_2 , which oxidize the liberated phosphine to phosphine oxide or phosphine sulfide, react unusually rapidly, because phosphine inhibition is reduced. These observations indicate that the reactions proceed through a coordinatively unsaturated ML_3Cl_2 intermediate (I) via preequilibrium loss of phosphine (Scheme I). I can be trapped by the substrate EX to form oxo, sulfido, or imido complexes, or it can dimerize to the quadruply bonded compounds $M_2L_4Cl_4$ (1a, 1b, and 2a; 2b decomposes to unidentified paramagnetic materials). For the molybdenum complexes 1, dimerization is competitive with oxidation, while the tungsten complexes 2 only undergo oxidation (except for entirely unreactive substrates such as phyophine oxides). This reflects the preferences of these elements: tungsten compounds are typically more easily oxidized, while metal-metal bonds are more easily formed for molybdenum. In one sense, this can be viewed as competition between metal-ligand and metal-metal multiple bonds, although it is not clear whether the competition is kinetically or thermodynamically controlled.

The selectivity for oxidation vs dimerization is determined by the affinity of the intermediate for the substrate. Epoxides and episulfides (and aziridines) oxidize 2b by direct oxygen or sulfur atom abstraction through a σ -bound adduct,^{5d} while CO₂ and heterocumulenes likely form η^2 -bound adducts.^{5c} Coordination of the substrate in the former case relies on the Lewis acidity of the metal center (the substrate acting as a simple σ -donor), while in the latter case the π -basicity of the metal is also important, as the ligand acts as a π -acid. The molybdenum species, being less electron rich, have lower affinities for π -acid substrates, so that dimer formation is often competitive with oxidation.

The intermediate I most likely behaves as a soft Lewis acid (low-valent and coordinated to phosphines), which may account for the apparent preference for oxidation by softer substrates over harder ones. For instance, reactions with ethylene sulfide are much more rapid than those with ethylene oxide, and phosphine sulfides oxidize 1 and 2 while phosphine oxides do not. Similar observations have been made in reactions of 2b with alcohols and thiols¹⁸ and with a chelating phosphine/phosphine oxide.¹⁷

Isocyanate oxidative addition generally occurs by cleavage of the sterically more hindered but thermodynamically weaker C=N bond (the C=O bond is about 40 kcal/mol stronger than C= N^{∞}). This is consistent with the formation of an η^2 -(C,N) adduct, the typical mode of η^2 -isocyanate binding. That W(PMe₃)₄Cl₂ alone of the ML_4Cl_2 species cleaves both the C=N and C=O bonds of aryl isocyanates—but not tert-butyl isocyanate—is difficult to explain. The imido and oxo products do not interconvert, so that this is not an equilibrium effect. $W(PMe_3)_4Cl_2$ is the most electron rich of the ML₄Cl₂ species, but the Hammett analysis shows that only a slight electronic influence is exerted by the isocyanate on the preference for imido versus oxo formation. In addition, sterics do not seem to play a crucial role, as the larger tert-butyl isocyanate is cleaved by 2a exclusively at the more hindered C=N bond rather than at the C=O bond.

Conclusions

The molybdenum(II) and tungsten(II) complexes MCl_2L_4 (L = PMe₃, PMePh₂) abstract an oxygen atom, a sulfur atom, or a nitrene (NR) group from a wide range of substrates, including epoxides and episulfides, CO₂ and isocyanates, phosphine sulfides, and DMSO (Table III). A major driving force is the formation of a strong metal-oxygen, metal-sulfur, or metal-nitrogen multiple bond. These reactions can be viewed as atom-transfer or oxidative addition reactions. The PMePh₂ complexes are much more reactive than PMe₃ derivatives because of their much faster rate of phosphine loss. For the molybdenum(II) complexes, oxidation is competitive with decomposition to quadruply bonded dimers Mo₂Cl₄L₄, while dimers are not observed for tungsten. Reduction of the substrate typically generates a π -acid ligand, ethylene from epoxides or episulfides and CO or CNR from CO₂ and isocyanates, which often binds to the metal oxo, sulfido, or imido product. The

equilibria of formation of these $d^2 \pi$ -acid complexes are more favorable in the more electron-rich tungsten compounds and for the more sterically crowded $\ensuremath{\text{PMePh}}_2$ complexes. Isocyanates react specifically by cleavage of the C=N bond to give imido carbonyl complexes, except for the reactions of $W(PMe_3)_4Cl_2$ with aryl isocyanates, which yield roughly equal amounts of oxo isonitrile and imido carbonyl products.

Experimental Section

General Considerations. All experiments were performed under a nitrogen or an argon atmosphere or under vacuum employing high-vacuum line, Schlenk, and standard glove box techniques. Solvents were dried according to standard procedures.³¹ All reagents were degassed on the vacuum line, checked for purity by NMR, and if necessary dried by standard means, except gases which were used directly from the cylinder without further purification. Deuterated solvents were purchased from Cambridge Isotope Laboratories. All gases were purchased from Matheson except carbonyl sulfide (K & K Laboratories, Inc.) and ethylene (MG Industries). Isocyanates and 1,3-di-tert-butylcarbodiimide were purchased from Aldrich. PMe₃, PMePh₂, (O)PMe₃, (O)PMePh₂, and (O)PPh3 were purchased from Aldrich and Strem, degassed (where applicable), and used without further purification. The following compounds have been previously reported: Mo(PMe₃)₄Cl₂ (1a),³² Mo- $(PMePh_2)_2Cl_4^{33} Mo(O)(PMePh_2)_3Cl_2(7b),^{34} W(PMe3)_4Cl_2(2a) and W(PMePh_2)_4Cl_2(2b),^{35} and W(O)(PMe3)_3Cl_2(5a) and W(O)-(PMePh_2)_3Cl_2(5b),^{36} The W(E)(X)(PMePh_2)_2Cl_2 compounds, Mo-$ (O)(CO)(PMePh₂)₂Cl₂ and W(O)(CO)(PMe₃)₂Cl₂, have been reported in ref 5b. W(PMe₃)₄Cl₂ (**2a**), W(PMePh₂)₄Cl₂ (**2b**),³⁵ *p*-tolyl isonitrile,³⁷ (S)PMePh₂,³⁸ and PMe₃-d₉³⁹ were prepared following published procedures.

NMR spectra were acquired at ambient temperatures ($24 \pm 2 \ ^{\circ}C$) using Bruker WM-500, AF-300, and AC-200 and Varian VXR-300 Fourier transform spectrometers. The ¹H NMR spectra were referenced relative to TMS, ferrocene, or the residual protons in the solvent. The ³¹P[¹H] NMR spectra were recorded at 202.5, 121.4, or 81.0 MHz and were referenced to external 85% H_3PO_4 . The $^{13}C[^{1}H]$ NMR spectra were recorded at 75.43 MHz and referenced relative to benzene- d_6 (δ 128 ppm). Only nonaromatic resonances have been reported for the complexes. Spectra are reported as δ (ppm) (number of hydrogens, multiplicity, coupling constants (in hertz), assignment). Infrared spectra were recorded on a Perkin-Elmer 1600 FTIR as Nujol mulls or in benzene solutions using NaCl cells, and they are reported in cm⁻¹. Intensities of IR bands are reported as (s) = strong, (w) = weak, or (sh)= shoulder.

Many reactions studied were performed in sealed NMR tubes. The reaction between $Mo(PMe_3)_4Cl_2$ (1a) and an excess of SO₂ is a representative example: In the dry-box, an NMR tube sealed to a ground glass joint is charged with 15 mg $(3.2 \times 10^{-5} \text{ mol})$ of Mo(PMe₃)₄Cl₂ (1a) and 3 mg of ferrocene. Benzene- d_6 (0.5 mL) is added and the tube is fitted to a 25.7-mL gas addition bulb. The apparatus is attached to the vacuum line and cooled slowly with liquid nitrogen to -196 °C, and the head space is degassed. The frozen tube is isolated from the gas addition bulb, and 69 Torr of SO₂ is admitted into the line and the bulb. A 25.7-mL aliquot of gas (9.6 \times 10⁻⁵ mol at 298 K) is isolated from the rest of the line and condensed into the NMR tube which is then sealed with a torch. The frozen tube is slowly thawed to ambient temperature, and the ensuing reaction is followed by NMR. NMR yields of products are reported as the % of metal reactant (1 or 2) observed initially which is required to produce a given product, referenced to TMS or ferrocene as an internal standard.

Mo(PMePh₂)₄Cl₂ (1b). A 200-mL three-neck flask was charged with 5.0 g of $Mo(PMePh_2)_2Cl_4$ (5.2 × 10⁻³ mol) and 0.23 g (6.2 mmol) of activated magnesium turnings. A rubber septum was attached to one of the necks and the other was stoppered. THF (100 mL) was condensed

- (32) Rogers, R. D.; Carmona, E.; Galindo, A.; Atwood, J. L.; Canada, L. G. J. Organomet. Chem. 1984, 277, 403-415.
 (33) Butcher, A. V.; Chatt, J. J. Chem. Soc. A 1970, 2652-2656.
 (34) Cotton, F. A.; Disbold, M. P.; Roth, W. J. Inorg. Chem. 1987, 26.
- 2848-2852
- (35) Reference 9 and Sharp, P. R.; Bryan, J. C.; Mayer, J. M. Inorg. Synth. 1990, 28, 326-332.
- (36) Carmona, E.; Sanchez, L.; Poveda, M. L.; Jones, R. A.; Hefner, J. G. Polyhedron 1983, 2, 797.
 (37) Krapcho, P. A. J. Org. Chem. 1962, 27, 1089–1090.
 (38) (a) Seyferth, D.; Welch, D. J. Organomet. Chem. 1964, 2, 1–7. (b)
- Zingaro, R. A.; McGlothlin, R. E. J. Chem. Eng. Data 1963, 8, 226-229.
- (39) Leutkens, M. L., Jr.; Elcesser, W. L.; Huffman, J. C.; Sattelberger, A. P. Inorg. Chem. 1984, 23, 1718-1726.

⁽³¹⁾ Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, 3rd ed.; Pergamon: New York, 1989.

into the flask on the vacuum line, the reddish suspension was warmed to room temperature, and 3.2 mL (1.1 \times 10⁻² mol) of PMePh₂ was added via syringe. The mixture was stirred for about 3 h (until the magnesium disappeared), and a clear dark ruby red solution developed. The solution was filtered under vacuum and stripped of volatiles, resulting in dark reddish-yellow residues which were then taken up in 90 mL of fresh toluene and filtered away from the magnesium salts. The filtrate was evaporated to dryness, the residues were redissolved in 25 mL of toluene, and the solution was concentrated and cooled slowly to -15 °C in an ice-acetone bath. Addition of 35 mL of pentane caused precipitation of a bright yellow solid, which was filtered, washed with 4×5 mL of diethyl ether, dried, stirred in 30 mL of pentane for a few hours to remove sequestered toluene and ether, filtered, and dried in vacuo overnight: yield, 4.15 g (55%); ¹H NMR 9.4 (broad, PCH₃Ph₂), 8.5 (broad, PCH₃Ph₂), 6.5 (broad, PCH₃Ph₂), -13 (3 H, very broad, PCH₃Ph₂); IR (Nujol) 3054 (w), 1960 (w), 1890 (w), 1812 (w), 1665 (w), 1586 (w), 1483 (sh), 1435 (sh), 1336 (w), 1310 (w), 1287 (w), 1271 (w), 1193 (w), 1095 (w), 1072 (w), 1028 (w), 968 (w), 896 (s), 885 (s), 842 (w), 736 (s), 695 (s), 678 (sh). Anal. Calcd for MoCl₂P₄C₅₂H₅₂: C, 64.54; H, 5.42. Found: C, 63.64; H, 5.35.

 $Mo(PMe_3)_4Cl_2$ (1a). The preparation of $Mo(PMe_3)_4Cl_2$ (1a) has been previously reported, ³² but the complex is more easily isolated using a procedure analogous to that described for $Mo(PMePh_2)_4Cl_2$ (1b) above. The crude product obtained after filtering away the magnesium salts may be purified by simply stirring the solids in a minimum amount of THF, followed by filtering, washing them with pentane, and drying in vacuo. 1a: yield, 65% (based on the reduction of 5.0 g of $Mo(PMe_3)_3Cl_4$); ¹H NMR -8.7 (36 H, broad s, $P(CH_3)_3$).

Mo(N'Bu)(PMe₃)₃Cl₂ (26a). To a 500-mL round-bottom flask equipped with a magnetic stir bar was added 0.50 g of Mo(PMe₃)₄Cl₂ (1a) (1.1 mmol) followed by 200 mL of toluene and 0.36 mL of tert-butyl isocyanate (3.0 mmol). The flask was fitted with a water-cooled condenser, and the yellow reaction mixture was allowed to reflux for 9 h while the apparatus was vented through a nitrogen bubbler on the vacuum line. During the first few hours of reflux, the solution became a burgundy red color which remained throughout the duration of the reaction. Use of a large vessel helps prevent formation of a byproduct (formed from the reaction between the carbon monoxide produced and the starting material) by allowing the CO generated to partition into a larger head space. After refluxing, the volatiles were stripped away under vacuum to give a reddish colored solid. NMR (C_6D_6) of the solid indicated that the imido product had formed along with some of the byproduct. Separation of the two products by recrystallization of the solids from toluene and diethyl ether afforded the imido complex as a purple solid, which was then washed several times with ether and dried in vacuo: yield, 0.10 g (20%); ¹H NMR 1.42 (18 H, t, J = 4, trans-P(CH₃)₃), 1.24 (9 H, d, J = 8, cis-P(CH₃)₃), 1.01 (9 H, s, C(CH₃)₃); ³¹P{¹H} NMR 5.7 (t, J = 18, cis-PMe₃), -7.3 (d, J = 18, trans-PMe₃); ¹³C{¹H} NMR 31.6 (s, $C(CH_3)_3$), 24.4 (d, J = 24, cis- $P(CH_3)_3$), 18.8 (t, J = 11, trans-P- $(CH_3)_3$) (the tertiary carbon of the 'Bu group was not observed); IR (Nujol) 1413 (sh), 1357 (sh), 1295 (w), 1274 (w), 1236 (s), 1213 (w), 942 (s), 843 (w), 805 (w), 736 (w), 668 (w). Anal. Calcd for $MoCl_2P_3NC_{13}H_{36}$: C, 33.49; H, 7.78; N, 3.00. Found: C, 33.08; H, 7.73; N, 2.96

 $Mo(N^{t}Bu)(CO)(PMePh_{2})_{2}Cl_{2}$ (21b). In a 25-mL glass reaction bomb was placed 0.20 mg of $Mo(PMePh_2)_4Cl_2$ (2b) (2.1 × 10⁻⁴ mol). The flask and its contents were degassed on the vacuum line, and 8 mL of dry toluene was condensed into the vessel. The resulting amber yellow solution was brought to ambient temperature, and 28 μ L (3.6 × 10⁻⁴ mol) of tert-butyl isocyanate was added. The reaction mixture was then stirred for 2.5 days, whereupon the solution became a dark amber color. The solution was transferred to a 25-mL Kjeldahl flask fitted to a frit, and the volatiles were removed under vacuum. The resulting greenish colored oil was triturated with 1 mL of diethyl ether, and an orange solid separated. Addition of 8 mL of pentane and filtration of the mixture gave an olive-orange colored solid, which was washed with pentane three times and dried in vacuo; yield, 0.067 g (67%). The solids were recrystallized from toluene-Et₂O, affording the imido complex 21b as a light orange solid: H NMR 2.32 (6 H, t, J = 4. trans-PCH₃Ph₂), 0.79 (9 H, s, C(CH₃)₃); ³¹P{¹H} NMR 14.7 (s, trans-PCH₃Ph₂); ¹³C{¹H} NMR 70.9 $(s, C(CH_3)_3), 30.0 (s, C(CH_3)_3), 15.1 (s, trans-PCH_3Ph_2)$ (the carbonyl carbon was not observed); IR (Nujol) 1983 (s) (v_{CO}), 1939 (sh). 1438 (sh), 1318 (w), 1280 (w), 1227 (m), 1099 (m), 1073 (w), 1030 (w), 999 (w), 895 (s), 804 (w), 754 (sh), 742 (m), 693 (m). Anal. Calcd for MoCl₂P₂NOC₃₁H₃₅: C, 55.87; H, 5.29; N, 2.10. Found: C, 55.89; H. 5.34: N. 2.08.

 $Mo(N-p-Tol)(CO)(PMePh_2)_2Cl_2$ (19b). In a 25-mL glass reaction bomb was placed 0.20 g (2.1 × 10⁻⁴ mol) of Mo(PMePh_2)_4Cl_2 (1b). The contents of the flask were degassed, and 8 mL of toluene was added followed by 31 μ L (2.5 × 10⁻⁴ mol) of *p*-tolyl isocyanate, producing an immediate purple colored solution. This solution was stirred for 3.5 h and was then transferred to a 25-mL flask attached to a frit. The volatiles were removed by vacuum to give a purple oil, which upon trituration with 1 mL of diethyl ether resulted in the separation of a purple solid. Addition of 8 mL of pentane caused the precipitation of solids, which were filtered, washed with 3×1 mL of pentane, and dried; yield, 0.12 g (81%). The complex was recrystallized from toluene-Et₂O to obtain an analytically pure sample of **19b**: ¹H NMR 6.65 (2 H, d, J = 8, CH₃C₆H₄N), 6.36 (2 H, d, J = 8, CH₃C₆H₄N), 2.31 (6 H, t, J = 4, trans-PCH₃Ph₂), 1.74 (3 H, s, CH₃C₆H₄N), 14.1 (t, J = 13, trans-PCH₃Ph₂) (the carbonyl carbon was not observed); IR (Nujol) 3062 (sh), 2360 (w), 2005 (s), 1960.5 (s) (ν_{CO}), 1588 (w), 1484 (sh), 1435 (sh), 1407 (w), 1317 (w), 1281 (w), 1188 (w), 1170 (w), 1200 (m), 730 (s), 693 (s), 652 (w). Anal. Calcd for MoCl₂P₂NOC₃H₃H₃: C, 58.30; H, 4.75; N, 2.00. Found: C, 57.91; H, 4.72; N, 2.02.

 $Mo(N^{i}Bu)(CN^{i}Bu)(PMePh_{2})Cl_{2}$ (23b). In a 25-mL glass reaction bomb was placed 0.25 g (2.6×10^{-4} mol) of Mo(PMePh₂)₄Cl₂ (**1b**). The contents were degassed on the vacuum line, and 9 mL of dry benzene was condensed over the solid followed by the addition of 149 μ L (7.8 × 10⁻⁴ mol) of di-tert-butylcarbodiimide. The contents were stirred at ambient temperature for 1 month, whereupon the solution became dark amber in color. The volatiles were removed under vacuum, giving a red gum which was taken up in pentane and triturated until a light purple solid precipitated. The solids were filtered over a frit, redissolved in toluene, and filtered, and the dark red-olive solution was concentrated until a purple-red solid precipitated. The solids were filtered, washed with $5 \times$ 1 mL of diethyl ether, and dried in vacuo. 23b: yield, 49 mg (27%); ¹H NMR 2.45 (6 H, d, J = 4, trans-PCH₃Ph₂), 1.01 (9 H, s, C(CH₃)₃), 0.72 (9 H, s, C(CH₃)₃); ³¹P{¹H} NMR 20.2 (s, trans-PCH₃Ph₂); ¹³C{¹H} NMR 69.9 (s, $C(CH_3)_3$), 56.8 (s, $C(CH_3)_3$), 30.8 (s, $C(CH_3)_3$), 30.2 (s, C- $(CH_3)_3$, 16.5 (t, J = 14, trans-PCH₃Ph₂) (the isonitrile carbon was not observed); IR (Nujol) 2128 (s) (ν_{CN}), 1588 (w), 1574 (w), 1318 (w), 1305 (w), 1278 (w), 1228 (m), 1210 (w), 1156 (w), 1126 (w), 1099 (m), 1072 (w), 1029 (w), 999 (w), 898 (s), 855 (w), 839 (w), 800 (w), 753 (sh), 745 (m), 695 (s), 683 (sh).

 $W(N^{t}Bu)(CO)(PMe_{3})_{2}Cl_{2}$ (22a). In a 25-mL glass reaction bomb was placed 0.25 g (4.5×10^{-4} mol) of W(PMe₃)₄Cl₂ (**2a**). The contents of the flask were degassed on the vacuum line, and 8.5 mL of toluene was condensed over the solid followed by the addition of $102 \,\mu\text{L}$ (9.0 × 10^{-4} mol) of tert-butyl isocyanate. The reaction mixture was heated to 70 °C for 6.75 h, producing a red-orange colored solution. The volatiles were then removed under vacuum, yielding a red-orange solid which was redissolved in 4.0 mL of fresh toluene and heated for an additional 2.75 h. The volatiles were removed again, and the red-orange solids were scraped from the walls of the bomb, recrystallized from toluene-diethyl ether, and dried in vacuo. 22a: yield, 200 mg (88%); ¹H NMR 1.44 (18 H, t, J = 4, trans-PCH₃), 0.93 (9 H, s, C(CH₃)₃); ³¹P{¹H} NMR -19.4 (s, trans-P(CH₃)₃, $J_{PW} = 295$); ¹³C[¹H] NMR 68.1 (s, C(CH₃)₃), 30.8 (s, C(CH₃)₃), 16.5 (t, J = 15, trans-P(CH₃)₃) (the carbonyl carbon was not observed); IR (Nujol) 1947 (s) (ν_{CO}), 1900 (sh), 1418 (sh), 1358 (w), 1302 (w), 1282 (w), 1258 (s), 1218 (w), 947 (s), 861 (w), 851 (w), 808 (w), 741 (w), 673 (w), 604 (w). Anal. Calcd for $WCl_2P_2NOC_{11}H_{27}$: C, 26.11; H, 5.38; N, 2.77. Found: C, 26.15; H, 5.25; N, 2.76.

W(S)(PMe₃)₃Cl₂ (11a). In a 25-mL reaction bomb were placed 0.25 g (4.5 × 10⁻⁴ mol) of W(PMe₃)₄Cl₂ (**2a**) and 58 mg (5.4 × 10⁻⁴ mol) of (S)PMe₃ (Aldrich). The contents of the vessel were degassed on the vacuum line, 8 mL of toluene was added, and the resulting solution was stirred for 5.5 h at 80 °C. During this time the color of the reaction mixture became reddish-purple. The volatiles were removed under vacuum, and the greenish residue was redissolved in 4 mL of fresh toluene giving a dark burnt peach solution, which was heated at 80 °C for an additional 1.5 h. The resultant purple solution was transferred to a 25-mL Kjeldahl flask fitted to a frit and stripped again of volatiles to give a greenish residue. The residue was recrystallized at -15 °C from toluene-pentane, washed with pentane, and dried in vacuo to give complex 11a as a dark green solid. The complex 11a cocrystallizes with trace amounts ($\sim 5\%$) of a byproduct in the reaction, W(PMe₃)₃Cl₃ (6a), which cannot be separated:⁴⁰ yield, 0.15 g (65%); ¹H NMR 1.67 (9 H, d, J = 8, cis-P(CH₃)₃), 1.56 (18 H, t, J = 4, trans-P(CH₃)₃); ³¹P{¹H} NMR -54.4 (t, J = 4, $cis-P(CH_3)_3$, $J_{PW} = 335$), -41.7 (d, J = 4. trans-P(CH₃)₃), $J_{PW} = 271$; ¹³C[¹H] NMR 33.8 (d. J = 31, cis-P(CH₃)₃,

⁽⁴⁰⁾ The difficulty of separating trivalent species ML_3Cl_3 from tetravalent $M(O)L_3Cl_2$ (M = Mo, W; L = phosphine) has been recently discussed: (a) Yoon, K.; Parkin, G.; Rheingold, A. L. J. Am. Chem. Soc. 1991, 113, 1437-1438; 1992, 114, 2210-2218. (b) Desrochers, P. J.; Nebesny, K. W.; LaBarre, M. J.; Lincoln, S. E.; Loehr, T. M.; Enemark, J. J. Am. Chem. Soc. 1991, 113, 9193.

22.7 (t, J = 14, trans-P(CH₃)₃); IR (Nujol) 1418 (sh), 1343 (sh), 1299 (w), 1280 (m), 1158 (w), 1086 (w), 950 (s), 857 (m), 772 (w), 727 (m), 669 (m).

W(N'Bu)(CN'Bu)(PMe₃)₂Cl₂ (24a). In a 25-mL reaction bomb was placed 0.25 g (4.5 × 10^{-4} mol) of W(PMe₃)₄Cl₂ (2a). The contents of the vessel were degassed on the vacuum line, and 9 mL of dry benzene was added followed by the addition of 259 μ L (1.3 × 10⁻³ mol) of ditert-butylcarbodiimide. The reaction mixture was then stirred at 80 °C for 34 h, during which time the solution became a reddish-orange color. The volatiles were removed under vacuum giving an red-orange solid, a few milligrams of which was analyzed by $^1\rm H$ NMR to determine the extent of reaction. The solids were taken up in 4 mL of fresh benzene, treated with 5.4 µL of additional di-tert-butylcarbodiimide (a 3-fold excess to react with the 5% of 2a which remained unreacted by NMR), and heated further for 2 h. The reaction mixture was again stripped of volatiles, and the red-orange solids were scraped from the bomb. Recrystallization from toluene-diethyl ether gave ruby red crystals of 24a: yield, 202 mg (80%); ¹H NMR 1.57 (18 H, t, J = 4, trans-P(CH₃)₃), 1.28 (9 H, C(CH₃)₃), 1.07 (9 H, C(CH₃)₃); ³¹P[¹H] NMR -20.4 (s, trans-P(CH₃)₃, $J_{PW} = 299$); ¹³C[¹H] NMR 67.6 (s, C(CH₃)₃), 61.6 (s, C(CH₃)₃), 31.7 (s, C(CH₃)₃), 31.4 (s, C(CH₃)₃), 17.0 (t, J = 14, trans-P(CH₃)₃) (the isonitrile carbon was not observed); IR (Nujol) 2012 (sh), 1916 (s), 1457 (s), 1414 (sh), 1363 (sh), 1302 (w), 1286 (w), 1280 (w), 1262 (s), 1236 (w), 1199 (s), 1039 (w), 957 (s), 855 (w), 806 (w),

Kinetics of Phosphine Exchange. Two solutions of $Mo(PMe_3)_4Cl_2$ (1a) in C_6D_6 (27 and 30 mg/mL) were prepared in NMR tubes which were attached to Teflon needle valves. The solutions were frozen (-196 °C)

and degassed on the vacuum line and then treated with 12 and 40 equiv of PMe₃-d₉ (0.7 and 2.5 M, respectively). Upon thawing of the tubes to ambient temperature ($24 \pm 2 \,^{\circ}$ C), the equilibration of the free deuterio and bound protio phosphine was monitored by ¹H NMR and found to follow the integrated rate expression $kt = 4[[P]_e/[P]_i] \ln \{[P]_e/([P]_e$ - [P]_i)], where [P]_e is the [PMe₃]_{free} at equilibrium, [P]_i is the initial amount of [PMe₃] bound to M(PMe₃)₄Cl₂, and [P]₁ is the [PMe₃]_{free} at time t. In this expression, k is the rate constant for loss of a single phosphine from Mo(PMe₃)₄Cl₂; isotope effects have been neglected. The derived first-order rate constants were 6.6×10^{-4} and $6.5 \times 10^{-4} \, \text{s}^{-1}$, respectively, for the two runs at different concentrations of PMe₃-d₉.

Hammett Study of Para-Substituted Phenyl Isocyanates with 2a. A stock solution of W(PMe₃)₄Cl₂ (2a) in C₆D₆ (60.0 mg/mL) was prepared and then dispensed in 250- μ L aliquots into each of the four NMR tubes followed by a 3-fold molar excess of the following isocyanates: *p*-tolyl isocyanate (10.1 μ L), phenyl isocyanate (8.7 μ L), 4-(trifluoromethyl)-phenyl isocyanate (11.5 μ L), and 4-methoxyphenyl isocyanate (10.4 μ L). An additional 250- μ L aliquot of C₆D₆ was added to each tube, the tubes were degassed and sealed, and the ambient temperature reactions were monitored by ¹H NMR. After approximately 3 weeks, most of the 2a in the tubes had reacted to form mixtures of tungsten oxo and imido products, identified by the similarity of their spectra to related compounds and distinguished by their respective J_{WP} values. Assignments for the ¹H spectra were made by ¹H[³¹P] decoupling experiments.

Acknowledgment. We thank Dr. Lauren Atagi, Dr. Diana Over, and Seth Brown for their advice and Dr. Tom Pratum for assistance with some of the NMR experiments. We are grateful to the National Science Foundation for financial support.

Gated Electron-Transfer Behavior in Copper(II/I) Systems. Comparison of the Kinetics for Homogeneous Cross Reactions, NMR Self-Exchange Relaxation, and Electrochemical Data for a Copper Macrocyclic Tetrathioether Complex in Aqueous Solution

Nancy E. Meagher,^{1a} Kerri L. Juntunen,^{1a} Cynthia A. Salhi,^{1a} L. A. Ochrymowycz,^{1b} and D. B. Rorabacher^{*,1a}

Contribution from the Departments of Chemistry, Wayne State University, Detroit, Michigan 48202, and University of Wisconsin—Eau Claire, Eau Claire, Wisconsin 54701. Received May 1, 1992

Abstract: The kinetics of electron-transfer reactions involving $Cu^{11/1}([14]aneS_4)$ reacting with a series of selected counterreagents have been measured in aqueous solution at 25 °C, $\mu = 0.10$ M (ClO₄⁻). The reagents utilized include four oxidants [Ru-(NH₃)₄bpy³⁺, Ni([14]aneN₄)³⁺, Ru(NH₃)₂(bpy)₂³⁺, and Fe(4,7-Me₂phen)₃³⁺] and four reductants [Co(Me₄[14]tetraeneN₄)²⁺, Ru(NH₃)₄bpy²⁺, Ru(NH₃)₅isn²⁺, and Ru(NH₃)₅py²⁺], which were selected to provide a variety of reagent self-exchange rate constants and overall reaction potentials, thereby yielding a range of cross reaction rate constant values. Application of the Marcus equation to the cross reaction rate constants for the four *reduction* studies yielded consistent self-exchange rate constant values of log $k_{11(red)} = 3.78$ (±0.26) for Cu^{11/1}([14]aneS₄). By contrast, the two *oxidation* kinetic studies having the largest reaction potentials [i.e., using Ru(NH₃)₂(bpy)₂³⁺ and Fe(4,7-Me₂phen)₃³⁺ as oxidants] yielded log $k_{11(ox)} \approx 0$ (±0.26), while the *oxidation* reactions with smaller reaction potentials [i.e., using Ru(NH₃)₄bpy³⁺ and Ni([14]aneN₄)³⁺ as oxidants] yielded an apparent value of log $k_{11(ox)} \approx 2.5$ for Cu^{11/1}([14]aneS₄) when *relatively small concentrations* of the counteroxidant were used. Upon an increase in the Ni([14]aneN₄)³⁺ concentration, however, $k_{11(ox)}$ appeared to decrease until, at relatively high concentrations of the Ni(III) reagent, limiting first-order kinetic behavior was observed. In an independent study, NMR line-broadening measurements were made on Cu¹([14]aneS₄) solutions containing variable amounts of Cu¹¹([14]aneS₄) to obtain a direct measurement of log $k_{11(ex)} \approx 3.88 \pm 0.09$ at 25 °C ($\Delta H^4 = 20.7 \pm 4.5$ kJ mol⁻¹; $\Delta S^4 = -101 \pm 13$ J K⁻¹ mol⁻¹). This is in direct agreement with the values calculated from the reduction reactions. The patterns in the kinetic behavior of Cu^{11/1}([14]aneS₄) are shown to

Introduction

In previous work we have reported the results of homogeneous electron-transfer kinetic studies on both the oxidation and re-

(1) (a) Wayne State University. (b) University of Wisconsin-Eau Claire.

macrocyclic and acyclic polythioethers (L).² In that investigation, (2) Martin, M. J.; Endicott, J. F.; Ochrymowycz, L. A.; Rorabacher, D.

duction of Cu(II)/(I) complexes involving an entire series of

B. Inorg. Chem. 1987, 26, 3012-3022.